Algebra 2/Pre-Calculus

Name

Special Right Triangles (Day 2, Right Triangle Trigonometry)

In this problem set, we will explore the ratio of the sides for special right triangles, specifically the 30-60-90 triangle and the 45-45-90 triangle. We will also learn about how inverse trigonometric functions can be used to find angles. Finally, we will introduce three more trigonometric functions: secant, cosecant, and cotangent.

- 1. The goal of this problem is to find the ratio of the sides for a 45-45-90 triangle without using trigonometry. (You can use ideas from geometry, but don't use sine or cosine or tangent.)
 - **a.** Find the value of *x*. Explain how you got your answer.

b. Find the value of *y*. Explain how you got your answer.

Answers a. The triangle is isosceles, so x = 1. b. From the Pythagorean theorem, $1^2 + 1^2 = y^2$, so $y = \sqrt{2}$

2. Here's another 45-45-90 right triangle. Find the values of *x* and *y*. Explain how you got your answer.

Answer This triangle has dimensions that are 3 times as big as the triangle in the last problem, so x = 3 and $y = 3\sqrt{2}$.

3. Consider the following statements.

Statement 1: "The sides of a 45-45-90 triangle are always 1, 1, and $\sqrt{2}$."

Statement 2: "The sides of a 45-45-90 triangle are always in a ratio of 1, 1, and $\sqrt{2}$." Which statement is correct? Why?

- 4. The goal of this problem is to find the ratio of the sides for a 30-60-90 triangle without using trigonometry and without using your calculator. (You can use ideas from geometry, but don't use sine or cosine or tangent.)
 - **a.** Find the values of x and y. Explain how you got your answer. *Note:* This one is tricky! If you want a hint, look ahead to part **b**. But try it on your own first.

b. The trick to solving the 30-60-90 triangle is to draw a second 30-60-90 triangle next to it, as shown below. Explain how you know that the big triangle is equilateral. Then try find the values of x and y.

Answers All of the angles in the big triangle are 60° , so it is equilateral. Each side of the big triangle has a length of 2, so y = 2. Finally, the Pythagorean theorem tells us that $1^2 + x^2 = 2^2$, so $x = \sqrt{3}$.

We have found that the sides of a 45-45-90 triangle are in a ratio of $1:1:\sqrt{2}$ and the sides of a 30-60-90 triangle are in a ratio of $1:\sqrt{3}:2$, as summarized in the diagram below. Make sure to memorize these ratios, as we will be using them throughout the rest of this unit.

- 5. Find each of the following without using your calculator. *Hint:* Start by drawing a right triangle.
 - **a.** $\sin 60^{\circ}$ **b.** $\sin 30^{\circ}$

c.
$$\cos 60^{\circ}$$
 d. $\tan 60^{\circ}$

Answers a. $\frac{\sqrt{3}}{2}$ b. $\frac{1}{2}$ c. $\frac{1}{2}$ d. $\sqrt{3}$

6. Olivia and Lewis were trying to find the value of $\sin 45^\circ$. Olivia said the answer was $\frac{1}{\sqrt{2}}$ and Lewis said the answer was $\frac{\sqrt{2}}{2}$. Who was right?

Answer They are both right: $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

7. What is the value of $\tan 30^\circ$? Write your answer two different ways.

Answer $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

Along with sine, cosine, and tangent, there are three more trig functions that we will use sometimes. They are called secant, cosecant, and cotangent. We define them below.

Definitions In a right triangle, we define secant, cosecant, and cotangent in the following way:

$\sec \theta - \frac{\text{hypotenuse}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$\csc \theta = \frac{\text{hypotenuse}}{1 + \frac{1}{2}}$	$\cot \theta = \frac{\text{adjacent}}{1}$
adjacent	opposite	opposite

8. Find each of the following. *Hint:* Start by drawing a right triangle.

a.
$$\sec 45^{\circ}$$
 b. $\csc 30^{\circ}$

c. $\cot 60^{\circ}$

d. $\cot 45^{\circ}$

Answers a. $\sqrt{2}$ b. 2 c. $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ d. 1

9. Find the values of $\cos\theta$, $\sin\theta$, $\tan\theta$, $\sec\theta$, $\csc\theta$, and $\cot\theta$ in the right triangle pictured below.

Answers $\cos\theta = \frac{12}{13}$, $\sin\theta = \frac{5}{13}$, $\tan\theta = \frac{5}{12}$, $\sec\theta = \frac{13}{12}$, $\csc\theta = \frac{13}{5}$, $\cot\theta = \frac{12}{5}$

10. Find the values of $\cos\theta$, $\sin\theta$, $\tan\theta$, $\sec\theta$, $\csc\theta$, and $\cot\theta$ in the right triangle pictured below.

Answers
$$\cos\theta = \frac{7}{10}$$
, $\sin\theta = \frac{\sqrt{51}}{10}$, $\tan\theta = \frac{\sqrt{51}}{7}$, $\sec\theta = \frac{10}{7}$, $\csc\theta = \frac{10}{\sqrt{51}} = \frac{10\sqrt{51}}{51}$, $\cot\theta = \frac{7}{\sqrt{51}} = \frac{7\sqrt{51}}{51}$

- 11. Consider the following right triangle (drawn to scale below).
 - **a.** Without using your calculator, estimate the value of θ .

b. Find the value of θ by using the inverse trigonometric functions on your calculator. *Note:* If you don't remember how to do this, you can look ahead to part **c**.

c. Here's a solution to the last problem:

 $\sin \theta = \frac{7}{16}$ $\theta = \sin^{-1}(\frac{7}{16})$ $\theta = 25.94^{\circ}$

Use a similar method to find the value of θ in the right triangle pictured below. *Note:* Make sure your calculator is in degree mode.

Answer c. $\theta = 56.31^{\circ}$

12. Find the value(s) for the variables in each of the following right triangles.

Answers a. 69.33° b. 23.96° c. x = 14.91 and y = 13.17